Molecular and Cellular Pathobiology Autophagy Inhibition by Sustained Overproduction of IL6 Contributes to Arsenic Carcinogenesis
نویسندگان
چکیده
Chronic inflammation has been implicated as an etiologic factor in cancer, whereas autophagy may help preserve cancer cell survival but exert anti-inflammatory effects. How these phenomenas interact during carcinogenesis remains unclear. We explored this question in a human bronchial epithelial cell–based model of lung carcinogenesis that is mediated by subchronic exposure to arsenic. We found that sustained overexpression of the pro-inflammatory IL6 promoted arsenic-induced cell transformation by inhibiting autophagy. Conversely, strategies to enhance autophagy counteracted the effect of IL6 in the model. These findings were confirmed and extended in a mouse model of arsenic-induced lung cancer. Mechanistic investigations suggested that mTOR inhibition contributed to the activation of autophagy, whereas IL6 overexpression was sufficient to block autophagy by supporting Beclin-1/Mcl-1 interaction. Overall, our findings argued that chronic inflammatory states driven by IL6 could antagonize autophagic states that may help preserve cancer cell survival and promote malignant progression, suggesting a need to uncouple inflammation and autophagy controls to enable tumor progression. Cancer Res; 74(14); 3740–52. 2014 AACR.
منابع مشابه
Autophagy inhibition by sustained overproduction of IL6 contributes to arsenic carcinogenesis.
Chronic inflammation has been implicated as an etiologic factor in cancer, whereas autophagy may help preserve cancer cell survival but exert anti-inflammatory effects. How these phenomenas interact during carcinogenesis remains unclear. We explored this question in a human bronchial epithelial cell-based model of lung carcinogenesis that is mediated by subchronic exposure to arsenic. We found ...
متن کاملAutophagy Supports Breast Cancer Stem Cell Maintenance by Regulating IL6 Secretion.
UNLABELLED Autophagy is a mechanism by which cells degrade cellular material to provide nutrients and energy for survival during stress. The autophagy is thought to be a critical process for cancer stem cell (CSC) or tumor-initiating cell maintenance but the mechanisms by which autophagy supports survival of CSCs remain poorly understood. In this study, inhibition of autophagy by knockdown of A...
متن کاملCDK Blockade Using AT7519 Suppresses Acute Myeloid Leukemia Cell Survival through the Inhibition of Autophagy and Intensifies the Anti-leukemic Effect of Arsenic Trioxide
The strong storyline behind the critical role of cyclin-dependent kinase (CDK) inhibitor proteinsin natural defense against malignant transformation not only represents a heroic perspective forthese proteins, but also provides a bright future for the application of small molecule inhibitorsof CDKs in the novel cancer treatment strategies. The results of the present study revea...
متن کاملCDK Blockade Using AT7519 Suppresses Acute Myeloid Leukemia Cell Survival through the Inhibition of Autophagy and Intensifies the Anti-leukemic Effect of Arsenic Trioxide
The strong storyline behind the critical role of cyclin-dependent kinase (CDK) inhibitor proteinsin natural defense against malignant transformation not only represents a heroic perspective forthese proteins, but also provides a bright future for the application of small molecule inhibitorsof CDKs in the novel cancer treatment strategies. The results of the present study revea...
متن کاملLow Level of Autophagy-Related Gene 10 (ATG10) Expression in the 6-Hydroxydopamine Rat Model of Parkinson\'s Disease
Background: Autophagy is a mechanism disassembling the damaged organelles from the cell. This study attempted to examine the expression of several autophagy-related genes in Parkinson’s disease (PD) rat model. Methods: The male Wistar rats were divided into three groups as control, sham, and lesion. In the latter group, the PD rat model was induced by the injection of 6-hydroxydopamine in...
متن کامل